Maya LIN Beyond Boundaries

From Holistic Landscape Syntheses to Transdisciplinary Landscape Management

Tibet Namchabawa Visitor Centre
ART INSTALLATIONS

艺术装置

撰文（美）鲍尔-诺格斯工作室
Text by Baul-Nogues Studio (US)

翻译 张亚平
Translation by ZHANG Ya-ping

校对 孙帅
Proofreading by SUN Shuai

鲍尔-诺格斯工作室是一家从事设计及装置艺术的综合工作室。它致力于创新实验性环境，通过情感体验、场景和肢体接触等手法展现人与人之间的互动，并努力尝试从更宽阔的角度解决建筑环境问题。BNS的设计过程包含访客与创作者之间默契的合作——一位合伙人专注于数字技术，而另一位合伙人则实践创造、制作过程。BNS将术模型、电脑模型和实体模型等信息在一个相对封闭的环境传递，让设计师能够通过不同的媒介，研究不同尺度设计的各个方面。

2005年，BNS曾设计了一个名为“墨西哥奇美安的谢尔”的艺术装置（图01-06）。这是一系列装置来自1979年迪士尼在美国推出的经典科幻电影《奇美安》。该片中，墨西哥奇美安的谢尔是一个充满活力的花神，试图通过特定的“黑暗连接”的能量，拥有“未知的广大真理”。

该装置通过轻质材料模拟天体黑洞，设计了循环的流动空间，当装置在洛杉矶材料及应用展览馆的户外场景内，它作为一种类似于黑色玻璃的轻质薄膜材料。它被放置在了一个由钢架结构支撑的屋顶下，其中的“墨西哥奇美安的谢尔”在地球上投射出奇幻的不规则彩色光影图案。此外，作曲家詹姆斯·梅设计的音响装置“光波反射和折射”不断发出管与频率的音乐声，营造了几分神秘氛围，令人流连忘返。当人们站在场地中心或“奇美安”的一点向上凝视时，会看见无限的天空。夜幕时分，整个装置从外部看去，如同热烈发光的旋转，仅能隐约看到其背后的建筑。

“墨西哥奇美安的谢尔”不仅是一个能充当建筑和雕刻的装置，还是一个按统一的制造策略“定制”的产品。设计师通过一台由计算机控制的切割机（CNC）利用成本的尼龙和凯夫拉纤维对聚酯薄膜进行加固，以实现美景的效果。通过对透明薄膜的加工处理，透明薄膜不仅具有反射性和透光性，还具有UV隔绝功能。它既不是一层膜，也不是弗雷奥托方式的电缆网状结构，而是一个由504个不同参数成分（“花瓣”）组成的独特组合阵列。每一片都用数控系统（CNC）编码，每个花瓣都有三个点与相邻花瓣连接，利用光亮的聚酯酸酯导光，使整体成为一体，好像被黑洞的引力扭曲着，随着与
黑洞距离的变化，花瓣的尺寸和比例也发生改变。

2007年，BNS以“流体天空”的设计理念赢得了纽约现代艺术博物馆的一个设计竞赛。该竞赛旨在为年轻的新锐建筑师提供一个施展才能的机会。BNS设计了一个位于P.S.1当代艺术中心的临时环境装置（图07-12），此装置产生的万花筒图案深深地吸引了观众。这些花是由日光透过一束带颜色的类似盛开花朵（无色玻璃状）的透明聚氨酯膜花瓶过滤后产生的，花瓣组合形成了一组透明表面，重塑了人们的视觉范围，悬挂于P.S.1庭院的上方。设计师将未经处理的废弃纸板制作成6座塔，并在它们顶部预留空隙，让花纸在花纸中用彩色膜搭建一个休闲的吊床。“流体天空”激活了复杂的周边和草坪公园及嘉年华的欢庆气氛，把草地的装饰景观装扮注入了P.S.1的灰色混凝土庭院。

2008年，BNS应加利福尼亚州科切拉山音乐节的委托，设计了Copper Droodscap（图13-14）。该装置漂浮在群山的水面上空，长达十天。它既为人们提供了视觉享受，同时也提供了音乐，让人们可以远离夏日的炙烤。白天，在该装置的作用下，池中光影交错，波光粼粼，音乐爱好者们可以在此休息或进行交流。入夜，Copper Droodscap的底部被灯泡“点燃”，宛若一座闪闪发光的灯塔，将夜空中的音乐广场上的人们吸引过来。

Copper Droodscap是在非标准模块方面的一个研究，虽然它采用了统一的尺寸单元，但是组成它的864个模块是独一无二的。标准单元使得系统组织便于控制，而每个单元的标准短——悬挂的卷须状物体的形式和比例——产生丰富的视觉和听觉体验。

2009年，BNS也来到了中国。在2009深圳城市建筑双城双年展上，BNS应参展商的设计了装置艺术作品“有首的建筑”（图15-19）。这个装置位于市民中心的下沉广场，奇
10,000多件衣服构成，在2019年结束后，这些前卫的服饰被作为消费品在深圳地区进行流通。这个装置既标志性的申报可持续发展的理念，同时也警示地提醒人们，在我们生活的城市里，建筑无论是在产品流通的关键时刻，还是在全球贸易的分界中，都不是永久性的。膨胀的效果，跨界制作将会戏剧性地重新定义消费单元，它们会从大众消费的代表演变为可持续发展和希望的象征。

从众多色彩美妙、形式独特而具有神奇想象力的作品中我们可以感受到BNS对创作构建过程充满热情。BNS相信，这一过程与目标产品的物理和美学特性紧密相关，它通过整合物质特性、条件限制以及经济因素，让物质主导结构的最终形式积极探索新方法以打破物质的美学、物理特性及生命周期之间的跨界限制。BNS并非通过数码工具让自己远离建筑环境，而是努力掌握和精通数码工具的应用，赋予它们新用途，更好地为设计服务。

Balt-Nogues Studio is an integrated design and fabrication practice that creates experimental built environments to enhance and celebrate the potential for social interaction through sensation, spectacle and physical engagement while striving to infuse the matter of the built environment within a downstream purpose. The design process of BNS is a carefully orchestrated collaboration between partners—one focused on digital development, the other using a hands-on approach to fabrication research. Scale models, computer models, and full scale mock-ups inform one another in a cycle of feedback so we may study all aspects of a design at various scales and through various media.

In 2005, BNS created an installation called Maximilian’s Schell (Fig 01-06), an art installation resembling a canopy of golden peacock feathers. The assembly paid homage to a character played by actor Maximilian Schell in Disney Studio’s forgotten sci-fi adventure The Black Hole. Dr. Reinhardt is a
visionary tyrant on a monomaniacal quest to harness the "power of the vortex" and possess "the great truth of the unknown."

The installation warped the flow of space with a golden rendition of a celestial black hole. Constructed in tinted Mylar resembling stained glass, the vortex functioned as a shade structure, swirling overhead for the entire summer of 2005. The interior of the immersive installation created a space for social interaction and contemplation by changing the volume, color, and sound of the courtyard gallery. During the day, the canopy cast colored fractal light patterns onto the ground while a sound installation by composer James Lum lightly rumbled below the feet of visitors. When standing in the center or "singularity" of the piece and gazing upward, the visitor could see only infinite sky. In the evening when viewed from the exterior, the vortex glowed warmly while both obscuring and allowing glimpses of the building behind it.

The installation functioned as architecture and sculpture but also as a "made-to-order" product through a unified manufacturing strategy. The designers achieved their aesthetic effects by manipulating Mylar reinforced with bundled Nylon and Kevlar Fibers on a computer-controlled (CNC) cutting machine. Simultaneously reflective and transparent, the amber-colored film offered UV-resistance through a laminated golden metallic finish. The result was neither a tent-type membrane nor a cable net structure in the manner of Frei Otto, but a unique tensile matrix comprised of 504 different instances of a parametric component or "petal," each cut and labeled using the CNC system. Every petal connected to its neighbors at three points using clear polycarbonate rivets to form the overall shape of a vortex. As though warped by the gravitational force of a black hole, the petals continually changed scale and proportion as they approached the singularity of the piece.

In 2007, BBS won the Museum of Modern Art's Young Architects Program Competition, with their 'Liquid Sky.' (Fig 07-12) It was a temporary
environment installed at the PS1 Contemporary Art Center. It immersed the viewer in kaleidoscopic patterns of color created by sunlight filtering through an array of translucent, tinted Mylar petals that resemble blossoming flowers of stained glass. Six towers constructed from untreated utility poles support the surface while providing discrete spaces at their base for relaxing on community hammocks. Liquid Sky evoked the vibrant aesthetics and festive activities of the circus, the amusement park and the carnival while drawing the Long Island City streetscape into the gray concrete courtyard of PS1.

Commissioned for the 2008 Coachella Valley Music Festival in California, BNS designed Copper Droopscapes(Fig.13-14), an art installation floating over the expansive festival grounds for ten days, providing both visual spectacle and shelter from the harsh desert sun. Throughout the day, music fans sat, talked, and slept in the dappled pools of colored light and shadow produced by the canopy. At night, Copper...
Droopscape was lit from underneath—a shimmering, fiery beacon drawing lovers and dancers from across the 90-acre concert grounds.

Cooper Droopscape was a study in non-standard modularity. While it employed a uniform cell dimension, each of its 804 parts was unique. The standard cell made field assembly manageable, while each part’s non-uniform aspects—the form and proportions of the hanging tendrils—yielded a rich visual and aural experience.

BNG is also invited to create a new installation “Built to Wear” at the 2009 Shenzhen Hong Kong Biennale (Fig.15-19). Located in an indoor exhibition hall beneath the Civic Square, the installation will be made of more than 10,000 articles of clothing. Over the course of the Biennale, the installation will be dismantled and these fashionable items dispersed into the consumer product stream flowing through the region. The installation will serve as a symbolic gesture of sustainability and a poetic reminder that the buildings in our cities are impermanent.
frozen moments in the flow of products through the tributaries of global exchange. Outside of its environmental benefits, the strategy of cross manufacturing will dramatically recontextualize the clothing item—a symbol of mass consumerism—into an alternative gesture of sustainability and hope.

BNS share an enthusiasm for the fabrication process as it relates to the built object both physically and poetically by letting the properties, limitations, and economic scenarios associated with a material guide a structure’s ultimate form while developing methods to extend the intertwined boundaries of a material’s aesthetics, physical potential and lifecycle. BNS does not seek to distance themselves from the built environment through the use of digital tools... rather BNS seeks to master their use, reinterpret their capabilities and adapt or modify them to suit our intentions.

Photo Credit:
Fig 01, Fig 07, Fig 09 and Fig 15-17 BNS; Fig 03, Oliver Hess; Fig 03 Scott Mayoral; Fig 04 Benny Chan; Fig 05 and Fig 18-19 Benjamin Dal; Fig 06 Neil Cochran; Fig 08, Fig 10 and Fig 12 Mark Lentz; Fig 11 Stoph Gorainick

About the Translator:
ZHANG Ya-ting, a native of Henan, is studying his Master Program of Urban Planning at the School of Landscape Architecture, Beijing Forestry University. (Beijing 100083)

About the Proofreader:
SUN Shux, born in 1986, a native of Shanxi, is studying his Master Program at the School of Landscape Architecture of Beijing Forestry University, majored in urban planning and design. (Beijing 100083)